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Fourier transform Raman spectroscopy combined with pattern recognition has been used to
discriminate olives of different qualities. They included samples of sound olives, olives with frostbite,
olives that have been collected from the ground, fermented olives, and olive samples with diseases.
Milled olives were measured in a dedicated sample cup, which was rotated during spectrum acquisition.
A preliminary study of the data set structure was performed using hierarchical cluster analysis and
principal component analysis. Two supervised pattern recognition techniques, K-nearest neighbors
and soft independent modeling of class analogy (SIMCA), were tested using a “leave-a-fourth-out”
cross-validation procedure. SIMCA provided the best results, with prediction abilities of 95% for sound,
93% for frostbite, 96% for ground, and 92% for fermented olives. The olive samples with diseases
(too few to define a class) were included in the validation and recognized as not belonging to any
class. None of the damaged olive samples was wrongly predicted to the class of sound olives. With
this approach a selection of sound olives for the production of high-quality virgin olive oil can be
achieved.
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INTRODUCTION

One of the essential characteristics that differentiates virgin
olive oil from other vegetable oils is that it is edible at the
moment of production, because solely mechanical or other
physical means are used. The fact that the oil extraction is
solvent-free and natural antioxidants are maintained in the oil
is reflected in the higher nutritional and economic value of this
product. However, virgin olive oil comes in different grades.
According to quality parameters such as low acidity (<0.8%)
and good organoleptic characteristics, which are established by
the International Olive Oil Council, only the highest quality oil
can be sold as “extra virgin”. Poor quality oil, calledlampante,
is not directly edible and needs refinement prior to consumption
(1).

The quality of olive oil depends on various factors, which
are all part of the entire production cycle. Under ideal conditions,
sound, ripe fruits give extra virgin olive oil. However, during

the growth phase, diseases, pests, and freeze damage can lead
to decreased olive oil quality. Among them, freeze damage
(frostbite) is found to affect the oil quality less. In a recent study
the quality indices of the oil were not found to be affected, but
lower oil stability and sensorial changes were observed (2).
Diseases and pests always lead to decreased olive oil quality,
generally reflected in high acidity values. During harvest, the
collection of overripe olives, which have already fallen to the
ground, is the major cause of poor quality (3). The fact that
olives lie on the ground for several days leads to the deterioration
of the fruit flesh with inevitable negative consequences for the
quality of the oil that is subsequently produced. The action of
microbial lipases increases acidity, and the contact with the soil
leads to off-flavors in the oil. The contents of several compo-
nents that give the olive oil its aroma, as well as the content of
antioxidants, such as polyphenols, decrease. Finally, storing of
olives prior to processing also deteriorates the quality of the
extracted oil. Acidity and peroxide values in the oil increase.
Furthermore, when olives are stored in huge piles, the drupes
get crushed and consequently liquid seeps out. Such conditions
favor enzymic activities that lead to defects and off-flavors in
the oil. Anaerobic fermentative processes cause an increase in
other products such as alcohols. These alcohols, together with
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n-octane and lactic acid, are responsible for the defective “fusty”
note in the organoleptic evaluation (4).

The quality of the produced oil will strongly depend on the
quality of the olives. Therefore, in a quality-oriented production
plant, olives with defects should be separated from sound fruits,
because a very small portion of bad fruits can ruin the whole
batch. At the moment, this separation is done only in some
production plants, by visual inspection or communication with
the farmer. This is not very reliable, but measuring conventional
analytical parameters used to characterize the oil, such as acidity,
would be far too time-consuming.

To our best knowledge there is no work reported that deals
with the separation of olives in different classes according to
their condition. On the contrary, the classification of olive oil
has been approached, mainly focusing on geographical origin
(5, 6), cultivar (7), varietyies (8), and adulteration (9). Only
two works (10,11) treated the discrimination of the different
olive oils according to their quality, using metal oxide sensors
and mass spectrometry, respectively.

Fourier transform (FT) Raman spectroscopy is a very promis-
ing tool in process analytical chemistry because many samples
can be examined nondestructively in a short time without any
sample preparation. The sample is irradiated by a near-infrared
laser beam. Frequency shifts of the scattered light can be
analyzed and presented as spectra. Spectral bands represent
vibrations characteristic for chemical bonds and structural units
within the molecules of the examined sample. In combination
with chemometric data evaluation FT-Raman spectroscopy is a
powerful tool capable of extracting chemical information also
from complex matrices. In this context FT-Raman spectroscopy
was applied in different classification tasks to matrices such as
rice (12), wood types (13), corals (14), honey (15), and epithelial
cancers (16).

In previous works we reported applications of this technique
to olives in the quantitative analysis of humidity, oil content
(17), and free fatty acid content (18). In the present work FT-
Raman spectroscopy, combined with multivariate data analysis,
was applied to olive analysis with the aim of discriminating
among olives of different quality. The capability of this
technique was studied in the separation of sound olives, olives
with freeze damage, olives with diseases (Verticillium wilt and
anthracnose), olives collected from the ground, and fermented
olives. The pattern recognition techniques hierarchical cluster
analysis (HCA), principal component analysis (PCA),K-nearest
neighbor (KNN), and soft independent modeling of class
analogy (SIMCA) were used.

EXPERIMENTAL PROCEDURES

Olive Samples. One hundred and forty-six olive samples were
collected in the period January-March 2004 in the olive culture and
process research station at CIFA Venta del Llano (Jaén, Spain). They
included 59 samples of sound olives (of 8 different varieties) collected
from the tree, 28 of olives with frostbite, 7 samples with diseases
(Verticillium wilt and anthracnose), 26 fermented olive samples, and
26 samples of olives collected from the ground. The details of the olive
samples are shown inTable 1. Throughout this paper samples will be
referred to as belonging to the following five classes: sound, frostbite,
disease, fermented, and ground.

Spectra Acquisition.A Bruker RFS (FT)-Raman spectrometer fitted
with a liquid nitrogen-cooled Ge detector was used to record the Raman
spectra. The radiation of excitation was the 1064 nm line from a Nd:
YAG laser (coherent). The Raman scattered radiation was collected at
180° geometry. The samples were investigated in a homemade cell.
This consisted of a hollow cylindrical magnet, which was covered inside
with a Teflon layer. The dimensions of the cell were 13 mm inner

diameter and 5 mm depth. The cell was attached to a synchronous motor
mounted in the sample compartment. The motor rotated the sample
cell around the horizontal axis of the laser beam at 5 rounds per minute.
In this way, a circumference of 3 mm radius was illuminated by the
laser instead of a spot of few micrometers, thus compensating for sample
heterogeneity. All spectra were obtained with 500 mW laser power, at
a resolution of 4 cm-1, and were the average of 300 scans, resulting in
an acquisition time of 8 min. No sample pretreatment except milling
using a hammer mill was necessary.

Data Analysis. Data Pretreatment.Data pretreatment by vector
normalization of Raman spectra was done in the range of 2880-2950
cm-1. For data analysis the spectral ranges of 300-1800 and 2600-
3500 cm-1 were used. No baseline correction and smoothing were
needed.

PCA, HCA, and SIMCA were performed using the software pack-
ages PLS_toolbox (Eigenvector Research, Inc., Manson, WA) and Sta-
tistics Toolbox [version 2.2 (R11), 1998] for Matlab (The Mathswork,
Inc., Natick, MA). KNN analysis was performed using the software
package V-Parvus-2003 (M. Forina, Genoa, Italy).

HCA is an unsupervised classification procedure that involves a
measurement of the similarity between objects based on their mea-
sured properties (variables). Objects are grouped in clusters in terms
of their nearness in the multidimensional space. In this work the dis-
tance matrix was calculated using Euclidean distances. From the
distance matrices the dendrograms were created using the Ward
algorithm. This agglomeration method is generally recommended for
large data sets. The elements or clusters are joined with the criterion
that the sum of heterogeneities of all clusters should increase as little
as possible

PCA transforms the original data matrix into a product of two
matrices: the scores matrix, which contains the information about the
objects, and the loadings matrix, which contains the information about
the variables. It is an unsupervised technique that reduces the
dimensionality of the original data matrix retaining the maximum
amount of variability. It allows the relationship between variables and
observations to be studied, as well as recognizes the data structure.

KNN, a supervised classification method, is based on the distance
of the objects in the multidimensional space. To classify an unknown,
the distance is calculated between it and a set of samples with known
class membership. The predicted class of an unknown sample is then
assigned as the class of theK samples nearest to it.

SIMCA, another supervised classification method, constructs a model
for each class independently by PCA. The number of significant
components is defined by means of a cross-validation procedure. In
the original SIMCA formulation developed by Wold (19), the distance
of a point from a class was determined by the out-of-space distance,
that is, by the Euclidean distance of the point from the subspace spanned
by thek principal components used to model the class. In this work
we used a more advanced formulation in which the SIMCA distance
includes an in-space distance, as well as an out-of-space distance (20).
The in-space distance is a measure of how well the projection of the
point into the principal component subspace agrees with the projections
of the known class data. These two distances can be calculated for the
classd0

2 and for the objectsdi
2. For objects belonging to the class, the

ratioF ) di
2/d0

2 then follows anF distribution. This results in a critical
distanceFcrit with probabilistic meaning (in this work a level of

Table 1. Characteristics of the Olive Samples

variety sound disease frostbite ground fermented

Picual 11 3 4 8 unknown
Arbequina 10 4 6 unknown
Frantoio 10 4 unknown
Cornicabra 7 1 4 6 unknown
Picudo 6 4 6 unknown
Picholine 6 4 unknown
Picholine Marrocaine 6 4 unknown
Blanqueta 2 2 unknown
Razzola 1 1 unknown

sum 59 7 28 26 26

6056 J. Agric. Food Chem., Vol. 52, No. 20, 2004 Muik et al.



significance of 95%). The in-space and out-of-space distances are then
combined, and the unknown test point is assigned to one or more classes
if it falls into the statistical limits.

RESULTS AND DISCUSSION

Raman Spectra of Milled Olives. Figure 1shows charac-
teristic FT-Raman spectra of milled olives in the region 300-
3300 cm-1. Presented are the mean spectra of the corresponding
classes sound, frostbite, disease, ground, and fermented. Gener-
ally, the FT-Raman spectra of the milled olives present a series
of bands with various Raman scattering intensities and shapes.
The major bands of the pure virgin olive oil at 1267 cm-1 [in-
planeδ(dC-H) deformation in unconjugated cis double bond],
1302 cm-1 (in-phase methylene twisting motion), 1442 cm-1

[δ(CH2)], 1655 cm-1 [ν(CdC)], 1747 cm-1 [ν(CdO)], 2852
cm-1 [νsym (CH2)], and 2900 cm-1 [νsym (CH3)] dominate the
spectrum. A broad band centered at 3250 cm-1 corresponds to
hydrogen-bonded OH vibration of water. Furthermore, bands
from the different parts of the olive fruit contribute to the
spectra; the band at 1604 cm-1 can be assigned to the aromatic
ring stretch of lignin, which is a major compound of the olive
kernel. A detailed discussion of the different features in the olive
spectra and a tentative band assignment can be found elsewhere
(17).

Visually, the most noticeable difference between the spectra
of the different class-means is the fluorescence background,
which is nearly absent in the sound class and increases with
the damages the olive suffers. This is probably caused by
destruction of cell membranes and alterations in the vegetable
matter, such as oxidation and enzymic reactions. Apart from
this, there are various relative intensity variations, minor shifting
in band positions, and small changes in the spectral contours
between classes.

Unsupervised Pattern Recognition.The goal of unsuper-
vised pattern recognition is to evaluate whether clustering exists
in a data set without using class membership information in
the calculations. Even if the class memberships of the samples
are a priori known, a preliminary study based on unsupervised
pattern recognition methods, such as HCA and PCA, is advisable
to characterize the structure of the data set.

HCA was applied to the mean-centered and normalized data
set. Results are shown as a dendrogram plot inFigure 2. Five
major clusters can be identified. Cluster A contains the majority
(45 samples) of the samples from the sound class and 4 samples

of the frostbite class. The first part of cluster B contains the
rest (14 samples) of the sound class, the second part samples
from the frostbite class (6 samples), and some of the disease
class (4 samples). In clusters A and B the samples are generally
closer to each other than in the other clusters, which is expressed
as a smaller distance in they-axis and indicates a higher
similarity. Cluster C consists mainly of samples from the
frostbite class (18 samples) mixed with some samples from the
other classes (2 disease, 2 ground, and 3 fermented). Cluster D
is a mixed cluster between the ground (12 samples) and
fermented (23 samples) classes and contains the last sample
from the disease class. Finally, cluster E consists solely of the
remaining 12 samples from the ground class. The dendrogram
shows that the majority of the samples from the classes ground
and fermented are clearly separated from the rest of the classes.
Also, the class sound is well separated, but slightly overlaps
with the class frostbite.

PCA.As a first step PCA on the mean-centered data without
spectral pretreatment was performed. Whereas scores plots
facilitate visualization of the clustering of samples, loadings plots
reveal the underlying variances by showing the influence of
the different spectral regions on the principal components. An
inspection of the loadings plots showed that the first principal
component (PC) was mainly influenced by the fluorescence
background and the second PC captured variation of the oil
content (not shown). As the variation in oil content did not
contribute to the class separation, which was revealed in the
inspection of the corresponding scores plot, it was decided to
perform a vector normalization in the range of 2880-2950
cm-1, where the major oil bands can be found, to compensate
for differences in oil content in the samples.

After this normalization, a second PCA showed that the data
pretreatment successfully diminished this variation. The inspec-
tion of the second PC showed that it contained variance due to
vegetable matter, mainly the kernel. This variance did not
contribute to the class separation, but it was not diminished with
any data pretreatment.Figure 3a shows the two-dimensional
plot of the samples in the space defined by the first and third
PCs of the normalized data. The class sound forms a tight
cluster, which is only slightly overlapped by samples from the
frostbite and disease classes. The samples from the frostbite
class form a cluster between sound and the other two classes,
ground and fermented, which are overlapped. A further class
separation, especially between ground and fermented, is achieved

Figure 1. Raman spectra of the milled olives: (a) mean sound; (b) mean
frostbite; (c) mean disease; (d) mean fermented; (e) mean ground. Figure 2. Dendrogram of the mean-centered and normalized data using

Euclidean distances and the Ward algorithm.
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by taking into account the fourth PC (Figure 3b) and the fifth
PC (not shown).

The preliminary study of the data set, using HCA and PCA,
led to the following results.

Normalizing the data helps to diminish the variation of oil
content in the samples and gives therefore a better class
separation. The classes sound, frostbite, ground, and fermented
form clusters, which partly overlap, but the samples of the class
disease do not form a group. The last is not surprising, because
the olive samples suffered from two diseases, and there were
too few samples to identify grouping. The samples from class
sound form a tighter group than the other classes. The largest
group is formed by the samples from class ground. Due to the
manner in which these olives were collected vegetable matter
and soil can be incorporated. This leads, together with the
different alteration processes that olives suffer on the ground,
to more diversity.

In addition to the knowledge about the structure residing in
the data set, two outliers have been detected, one of the class
sound and the other of the class ground, and removed. Finally,
it can be stated that the natural groupings among the Raman
spectra of the samples coincide largely with the known class
memberships.

Supervised Pattern Recognition.Because of the promising
results of the unsupervised techniques, the supervised tech-
niques, KNN and SIMCA, were applied to the Raman spectra.
These classification techniques use a training data set to establish

classification rules that then allow samples of unknown origin
to be classified. The goodness of the classification rules needs
to be validated. For this a “leave-a-fourth-out” cross-validation
procedure was applied. Three-fourths of the samples were
assigned to the training set and the other fourth to the test set.
This assignment was repeated four times, so that each sample
was predicted once. All classification results presented in this
section refer to the validation results. The reliability of the
classification models was studied in terms of prediction ability,
which is characterized by the percentage of the test set members
adequately classified by the rules developed in the training step.
Further attention was paid to the classification errors, which
were divided into false positive, that is, how many samples have
been wrongly classified to classx, and false negative, that is,
how many samples of classx have been wrongly assigned to
other classes.

After elimination of the outliers, the final data set consisted
of a total of 144 samples: 58 samples of the class sound, 26 of
the class frostbite, 25 of the class ground, 26 of the class
fermented, and 7 of the class disease. Data pretreatment
consisted of normalizing and mean-centering.

KNN was applied to the data set using the decision criteria
of three nearest neighbors and a majority vote. Results are
summarized inTable 2. The prediction abilities were good for
the classes sound (100%) and frostbite (93%), less accurate for
the classes ground (64%) and fermented (85%), and very poor
for the class disease (14%). The seven ground samples, which
have been classified in the fermented class, indicate that this
classification technique is not capable of separating these two
classes well. In the case of the seven disease samples, only one
was correctly classified, four were classified as frostbite, and
one each as ground and sound. A detailed inspection of the
results showed that distances of these samples to the nearest
neighbors were longer than the distances for the other samples.
This is in agreement with the results from the unsupervised
techniques and indicates that these samples do not form a class.
Finally, although all samples of the class sound have been
correctly classified, three samples of other classes gave false
positive responses. This means that 3.5% of the altered olive
samples were accepted as sound.

SIMCAconstructs a model for each class independently by
principal component analysis. In the PCA step of the SIMCA
model development a sufficient number of samples is necessary
to obtain a good representation of the class. The samples with
diseases were too few to define a particular class. Furthermore,
they showed no tendency to form a group, as seen in the
unsupervised techniques and confirmed using KNN. Neverthe-
less, they were included in the validation procedure to check if
they would be wrongly classified in any of the classes or
recognized as not belonging to any class.

The numbers of PCs used for the class models were seven
for the class sound and five each for the classes frostbite, ground,
and fermented. Results, which are presented inTable 3, show
good prediction abilities for all classes, with 95, 93, 96, and

Figure 3. Samples in the space defined by the (a) first and third PCs
and by the (b) first and fourth PCs of the mean-centered and normalized
data: (9) sound, (4) frostbite, (O) ground, (2) fermented, and (0) disease
olives.

Table 2. Validation Results of KNN Classification (Prediction Ability Is
Given in Percentage)

sound frostbite ground fermented disease false neg

sound 58 (100%) 0/58
frostbite 2 26 (93%) 2/28
ground 2 16 (64%) 7 9/25
fermented 3 1 22 (85%) 4/26
disease 1 4 1 1 (14%) 6/7
false pos 3/86 9/116 1/119 8/118 0/137
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92% for the classes sound, frostbite, ground, and fermented,
respectively. In contrast to KNN, a very good separation
between the classes ground and fermented was achieved. There
were also few cases of double classification of samples. Eight
sound samples were additionally classified to the frostbite class
and three frostbite samples additionally to the ground class. This
result indicates a certain overlap between the models of these
classes, but is not worrying because the final decision based on
the distance was for all of these samples their correct class.
One of the advantages of SIMCA is that it is able to recognize
when a sample does not belong to any of the established classes.
In our case, the seven disease samples were correctly rejected
by all class models. They were found to be closest to frostbite
or ground, but far outside the statistical limits.

The distances of the damaged olive samples to the sound class
model were sufficiently long, so that no sample was falsely
classified as sound. All samples with their corresponding
distances to the class sound model are shown inFigure 4. A
zoom to the distances between 0 and 10 is inserted in this figure,
for a better visualization of the samples that fall close to the
statistical limit (i.e., the critical distance). The statistical limit
is marked with a horizontal dashed line. Only one sound sample
is found clearly outside this limit. Samples from other classes,
which can be found close, are from the class frostbite and from
the class fermented. No samples with diseases and from the
class ground are situated close.

According to the obtained results SIMCA was shown to be
the more appropriate classification technique for this task. The
application of SIMCA to the Raman spectra of the milled olives
gave prediction abilities>90% for all defined classes. It should
be emphasized that with this classification technique no sample
was falsely classified in the class sound. This selectivity of the
sound class model is especially important if the discrimination
is done to improve the production of high-quality virgin olive
oil.

The presented work shows the possible implementation of
Raman spectroscopy in the olive oil production process. This
measurement works directly on the olives and therefore enables
a screening of olives according to their quality in order to
optimize the production of high-quality virgin olive oil.
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